STRATEGIES

Blind Search Strategies

e

ch algorithms are one of the most important areas
ificial intelligence.

torial optimization, decision analysis, game
arning, planning, pattern recognition,
eorem proving are some of the areas in
orithms play a key role.

raph G is an ordered pair (V , E) where the
ents of V are called vertices or nodes and the
nts of E are called edges or sides. Each element of
n be thought of an arc joining two vertices in V.

arcs may have specific directions in which case

aph is called a directed graph.

0 If there are more than one edﬁe joining two vertices,
the graph is called a multigraph.

= There may also be loops in fgraphs, a loop being an
edge joining a vertex with itself.

Trees

Avgraphis said to be connected if there is a path along the edges joining any
two vertices in the graph. A path which returns to the starting vertex is called
a cycle. A tree is a connected graph without cycles.

(a) Connected graph (b) Disconnected graph

Different types of Graphs

Rooted trees
In search strategies, we generally consider rooted trees where
one vertexis designated as the root and all edges are directed
away from the root. The root vertex is positioned near the top of
a page and the remaining vertices are positions below the root
vertex at different levels.

Internal
Node Internal
Node

Leaf Leaf Leaf Leaf
Node Node Node Node

A rooted tree

Search algorithm

of looking for a sequence of actions that reaches
ed search.

m takes a problem as input and returns a
of an action sequence.

d, the actions it recommends can be
1e execution phase.

Search tree

rmulated some problems, we need to solve them.

ible action sequences starting at the initial state form

ee with the initial state at the root; the branches are

actions and the nodes correspond to states in the state space of
‘the problem.

» The root node of the tree corresponds to the initial state.

Search tree

Example
Consider a person intending to travel from Arad to
Bucharest in Romania.

% Fagaras
n

80

Rimnicu Vilcea
=

A road map of Romania

xpand next.

(a) The initial state

(¢) After expanding Sibiu

Blind search

also called an uninformed search) is a search that has no
its domain. The only thing that a blind search can do is
tate from a goal state. The blind search algorithms

of the problem state. The only information

d searc s is the state, the successor function, the

the path cost.

is useful in situations where there may not be any information
us. We might just be looking for an answer and won’t know we
until we see it. It is also useful to study these blind searches as

ey form the basis for some of the intelligent searches.

» Strategies that know whether one non-goal state is “more promising” than

another are called informed search or heuristic search strategies.

e 1
ume that we are currently at Arad and we want to get to

0 construct a search tree we start by designating the
e root node. In the present problem, the initial state is
d so we designate Arad as the root node. There are
1s that we can take while we are at Arad, namely,
soara and go to Zerind. These actions define
h tree emanating from the root node and
t the nodes named as Sibiu, Timisoara and Zerind. These
ches form level 1 of the search tree. A blind search will
eference as to which node it should explore first.

e arbitrarily move to Sibiu. Then the possible actions are:
d, go to Rimnicu Vicea, go to Fagaras and go to Oradea.
s produce four branches from the node.

The process is continued.

Remarks

The search tree shown in (c) includes the path from Arad to Sibiu and back
to Arad again! We say that Arad is a repeated state in the search tree,
generated in this case by a loopy path.

adth-first search

rch is a simple strategy in which
anded first, then all the

. In general, all the nodes
pth in the search tree

Breadth-first search

urns the goal state or failure.

ariable called NODE-LIST and set it to the initial state.

a goal state is found or NODE-LIST is empty do:

(a Remove the first element from NODE-LIST and call it E. If NODE-
LIST was empty, quit and return failure.

(b) For each way that each rule can match the state described in E do:

i. Apply the rule to generate a new state.

ii. If the new state is a goal state, quit and return this state.
1i1. Otherwise, add the new state to the end of NODE-LIST.

The order in which the nodes are explored

while applying the BES algorithm:

Example 1

Examples

Let the search tree be as in Figure the initial and goal states being 1 and 8
respectively. Apply the breadth-first search algorithm to find the goal state.

ole called NODE-LIST and set it to the initial state.,
ate is found or NODE-LIST is empty do:

st element from NODE-LIST and call it E. If NODE-

pty, quit and return failure.

that each rule can match the state described in E do:

the rule to generate a new state.

new state is a goal state, quit and return this state.
vise, add the new state to the end of NODE-LIST.

Step no. | NODE-LIST | Node E ft::E&E:EEF Comment
1 1 - Initial state
2 1 -
3 - 1 2
4 2 1 -
5 2 1 3
6 2.3 1 -
7 2.3 1 4
8 2.3.4 1
9 3.4, 2 -
10 3.4 2 h]
11 3.4.5 2 _
12 3.4.5 2 6
13 3.4.5.6 2
13 4 5.6 3 No node generated from E
14 5.6 4 -
15 5.6 4 7
16 5.6,7 4 -
17 5.6.7 4 8 Goal state. Return 8 and quit.

Examples

ater jug problem and the associated production rules. We now
ch tree using the breadth-first search algorithm.
tree with the initial state (0, 0) as its root.

Fig 1:

2. Construct all the ch11dren of the root by applying each of the
ble rules to the initial state. Then we get a tree. ;

Stage 4. The process is
continued until we get a
node representing the goal
state, namely, (2, 0).

Depth-first search

a goal state, quit and return success.

erwise, do the following until success or failure is signaled:

enerate a successor E of the initial state. If there are no more
ccessors, signal failure.

| depth-first search with E as the initial state.

success is returned, signal success. Otherwise continue in this loop.

The order in which the nodes are explored while
applying the DFS algorithm:
0 1> 3 54 2 D506

ee be as in Figure, the initial and goal states being 1 and 7

ly the depth-first search algorithm to find the goal state.

DEFS(x) an invocation of the depth-first
search algorithm with x as the initial
vertex. The various nodes are visited in the

following order:

1+2—=-3—=+4—=5—=+6—=7

Examples

ater jug problem and the associated production rules. We now
h tree using the depth-first search algorithm.
ee with the initial state (0, 0) as its root.

Fig 1:

. We generate a successor E for (0, 0). We choose the successor obtained
plication of Rule 1 in the production rules. Then we get a tree as in
Fig 2: (0,0)

w for the leaf node in Figure 2, generate a successor by applying
an applicable rule. The tree at this point is Fig 3.
Fig 3:

(0,0)

Stage 4. The process is
continued until we get a
node representing the goal
state, namely, (2, 0).

Breadth-first search vs.

depth-first search

Breadth-first

Depth-first

Reqguires more memory because
all of the tree that has so far been
generated must be stored.

Requires less memory because
only the nodes in the cumrent
path are stored.

All parts of the search tree must
be examined at level n before
any node on level n + 1 can be
examined.

May find a solution without ex-
amining much of the search
space. It stops when one solu-
tion 1s found.

Will not get trapped exploring a
blind alley.

May follow an unfruitful path
for a long time, perhaps for ever.

If there 1s a solution, Guaranteed
to find a solution if there exists
one. If there are multiple so-
lutions then a minimal solution
(that 1s, a solution that takes a
minimum number of steps) will
be found.

May find a long path to a so-
lution in one part of the tree
when a shorter path exists in
some other unexplored path of
the tree.

Breadth-first search uses queue
data structure.

Depth-first search wuses stack
data structure.

More suitable for searching ver-
tices which are closer to the

given source.

More suitable when there are so-
lutions away from source.

Depthfirst iterative deepening
(DFID) search

Iterative deepening combines the benefits of depth-first and breadth-first
searches: Like breadth-first search, the iterative deepening search is guaranteed
to find a solution if one exists. In general, iterative deepening is the preferred
uninformed search method when the search space is large and the depth of the
solution is not known.

Algorithm

1. Set SEARCH-DEPTH = 1.

2. Conduct a depth-first search to a depth of SEARCH-DEPTH. If a solution is
found, then return it.

3. Otherwise, increment SEARCH-DEPTH by 1 and go to step 2.

]

o

{r R

mEm nm r;Dm D:E%DD hr% E mté

Iterative deepening

PDepth=first iterative deepening (DFID)
search...

The order in which the nodes are explored in iterative deepening

JEPTNAITst iterative deepening (DFID)
search...

advantages

ortest solution path to the goal state if it

1 amount of memory used is proportional to the number of
tion path.

but the final one are wasted.

